JMSCR Vol||05||Issue||04||Page 20223-20231||April

2017

www.jmscr.igmpublication.org Impact Factor 5.84 Index Copernicus Value: 83.27 ISSN (e)-2347-176x ISSN (p) 2455-0450 crossref DOI: _https://dx.doi.org/10.18535/jmscr/v5i4.78

Journal Of Medical Science And Clinical Research An Official Publication Of IGM Publication

Dexmedetomidine: A Novel Premedicant in RSI - A Clinical Study Conducted in a Tertiary Care Institution in South India

Authors

Beula G¹, Rajani Gandha Venkitachalam², Raman Naresh Kumar³

¹Assistant Professor, Department of Anaesthesia, Sree Mookambika Institute of Medical Sciences,

Kulasekharam, Tamilnadu, India

Email: beulakiron@gmail.com

²Assistant Professor, Department of Anaesthesia, Department of Anaesthesia, Govt. Medical College

Thiruvananthapuram, Kerala, India

Email: gauri20cn@gmail.com

³Postgraduate Resident, Dept of Anaesthesia, Govt. Medical College, Thiruvananthapuram, Kerala, India

Corresponding Author

Raman Naresh Kumar

Add: 2/221 Thottakaran Street, Siruvapuri, Ponneri Taluk, Tiruvallur District, Chennai Tamilnadu 601206 Email: nareshanesthetist@gmail.com, Mobile No.8939392787

ABSTRACT

Background: Patients often require a rapid sequence induction (RSI) endotracheal intubation technique during emergency ophthalmic surgeries which is often a nightmare to the anaesthesiologists as patients with penetrating eye injury often present with full stomach. Traditionally succinylcholine has been the most commonly used muscle relaxant for this purpose because of its fast onset and short duration; unfortunately, it can have serious side effects like increased intraocular pressure. Various drugs like sufentanil and clonidine has been studied in an attempt to use as a premedicant for blunting the rise in intraocular pressure with varying results. Dexmedetomidine is a selective alpha-2 adrenergic agonist that has IOP-lowering properties along with sedative and analgesic effects. Studies have shown dexmedetomidine reduces intraocular pressure, intubation responses and anaesthetic requirements in patients undergoing ophthalmic surgery.

Aim: To determine the effect of dexmedetomidine in the prevention of rise of IOP by succinylcholine during RSI intubation

Methods: 70 patients who are undergoing elective non ophthalmic surgery have been enrolled in this study. Adult patients in the age group 20-65 years weighing 60-80 kg of either sex falling under ASA I / II of American Society Of Anaesthesiologists (ASA) physical status classification. We collected the data using structured proforma and interpreted using Ramsay sedation scale, Schiotz tonometry for measuring IOP.

Results: Dexmedetomidine as a premedicant in patients undergoing surgeries under GA was found to reduce the IOP by 34% after a single i.v. dose of dexmedetomidine (0.6 mg/kg). Additionally, the pressor response to laryngoscopy and endotracheal intubation was also significantly attenuated

Conclusions: Premedication with intravenous Dexmedetomidine under the dose given in the present study design attenuates the rise in intraocular pressure following succinylcholine and intubation. The attenuation of haemodynamic stress response to laryngoscopy and intubation is an additional advantage. Hence dexmedetomidine could be used as a premedicant in situations where an increase in intraocular pressure following succinylcholine and intubation is prejudicial for patients.

Keywords-Anaesthesia; ophthalmic, RSI, Dexmedetomidine, increased intra-ocular pressure.

2017

Introduction

Patients often require a rapid sequence induction (RSI) endotracheal intubation technique during emergency ophthalmic surgeries which is often a nightmare to the anaesthesiologists as patients with penetrating eye injury often present with full stomach, Traditionally succinylcholine has been the most commonly used muscle relaxant for this purpose because of its fast onset and short duration;^[1] unfortunately, it can have serious side effects like increased intraocular pressure, blood pressure and heart rate.^[2] Pretreatment with lignocaine in a dose of 2ml/kg has kept IOP significantly below basal values throughout the study but it also suppressed mean arterial pressure to such low level which is detrimental for patients.^[3] like diazepam, tubocurarine, Various drugs sufentanil and clonidine has also been studied in an attempt to use as a premedicant for blunting the rise in intraocular pressure with failing results.^{[4],[5]} Dexmedetomidine is a selective alpha-2 adrenergic agonist that has IOP-lowering properties along with sedative and analgesic effects.^[6] Studies have shown that the hemodynamic responses(increased blood pressure and heart rate) produced by succinvlcholine during the time of induction can be attenuated by dexmedetomidine is an added advantage along with reducing intraocular pressure.^[7] Few studies^[8] have also proved that dexmedetomidine brilliantly reduces the stress hormones postoperatively for prolonged duration as context-sensitive half-time ranging from 4 min after a 10-min infusion to 250 min after an 8-h infusion.^[9] All these properties makes dexmedetomidine stands tall in the race of premedicant needed to be used during rapid sequence induction by succinyl choline and endotracheal intubation.

Materials and Methods Subject

This study was conducted on 70 adult patients in the age group 20-65 years weighing 60-80 kg of either sex ASA I / II of American Society Of Anaesthesiologists (ASA) physical status classification who were scheduled for elective non ophthalmic

surgeries under general anaesthesia at Government Trivandrum Medical college, Trivandrum, Kerala. 70 patients were divided into two groups with 35 in study group and 35 in control group respectively. All the patients included in the study were subjected to a detailed pre-anaesthetic check up and are fasted for 8 hours. Standard monitors like ECG, pulse oximeter, noninvasive blood pressure (NIBP) were attached and baseline vital parameters have been recorded. Topical Paracaine 0.5%, 2 drops in each eye was applied to the cornea and IOP was measured with a Schiöetz tonometer (made in Germany). Informed consent was obtained from all study subjects after explanation of the nature and possible consequences of the study. All study subjects were randomly allocated into two groups of 35 patients each to receive 0.6µg/kg dexmedetomidine (group 1) or normal saline (group 2) i.v. as premedication. Randomisation done using а computer generated random number. After 15minutes, sedation was assessed using Ramsay Sedation Scale, pre-oxygenation is done for 3 min, patients were induced with a sleep dose of thiopentonesodium. Succinylcholine was administered at a dose of 1.5 mg/kg to achieve muscle relaxation for intubation. After cessation of fasciculation, the trachea was intubated under direct vision laryngoscopy. The patient was excluded from the study if the trachea could not be intubated at the first attempt. After securing the airway, anaesthesia was maintained in all two groups with oxygen (33%), nitrous oxide (66%), isoflurane (1%), fentanyl citrate (1 µg/kg) and incremental doses of vecuronium bromide. Decrease in systolic blood pressure (more than 30% below baseline) was recorded hypotension and treated with as crystalloids and phenylephrine. Bradycardia [heart rate (HR) <50 beats/min] was treated by i.v. atropine.

Outcome measure

Mean arterial pressure (MAP), HR and IOP was recorded at the following time points:

- T1: Before premedication
- T2: Fifteen minutes after premedication

- T3: Thirty seconds after thiopentone sodium
- T4: Thirty seconds after suxamethonium
- T5: One minute after intubation
- T6: Two minutes after intubation
- T7: Four minutes after intubation
- T8: Six minutes after intubation

Statistical Analysis

Data were analysed using Standard SPSS 10.0 for Windows. Results are reported as mean + standard deviation. Demographic data and type of procedure were compared using unpaired t-test. Gender was compared using the chi square test. The changes occurring in IOP, heart rate, MAP in the two groups at each point of time were compared with each other using independent sample test. Sedation between the two groups was compared using Mann Whitney U test. A p-value of less than 0.05 was considered statistically significant.

Sedation score was recorded 15 minutes after dexmedetomidine administration using RAMSAY SEDATION SCALE

SCORE	DEFINITION					
1	Patient anxious & agitated or restless or both					
2	Patient cooperative ,oriented & tranquil					
3	Patient responds to commands only					
4	Patient has a brisk response to light glabellar tap					
	or loud auditory stimulus					
5	Patient asleep, sluggish response to light					
	glabellar tap or loud auditory stimulus					
6	Patient doesn't respond to painful stimulus					

Result

As evidenced by statistical analysis there were no significant differences between the two groups with regard to age, sex, weight, procedure (p <0.05). Table(1), Table(2), Table(3), Table(4).

There were also no significant differences at baseline heart rate, MAP and IOP.

There was no significant difference in the baseline IOP between the study and control population. (p 0.0706) 15 minutes after premedication. Even though the mean IOP of the study population 11.8 is lower than that of the control population (12.3) it is not statistically significant. But from T2 i.e., 30 seconds after thiopentone sodium onwards till T6 (2 minutes after intubation), the differences in IOP

significant. Table (5), Figure (1). This shows that even though the IOP rises following succinyl choline and intubation in both groups the rise in the study group is significantly lower than that in the control group. The peak value of IOP is reached at T5 (one minute after intubation). This is 15.5 (mean) + 2.11 SD for study group and 18.93 (mean) +1.49SD for control group. The difference between the two from baseline 4.02 to study group is statistically significant. Table(9), Table (10), Table (11).In the present study heart rate increased significantly after intubation in the control group (mean of 77 beats / minute with SD 8 at baseline to mean of 97 beats / minute with SD 7.2 at 1 minute after intubation). On the contrary in patients who received dexmedetomidine premedication, this response was attenuated (mean of 80 beats / minute with SD 9.2 at baseline to mean of 84 beats per minute with SD 8.7 at T5). Statistically significant decrease in heart rate of the study group from control group continues after intubation at 2,4,6 minutes. The increase in heart rate at T3 (30 seconds after thiopentonesodium) is consistent with the tachycardia producing the effect of thiopentone sodium.^[10] Table(6), Figure(2). In the placebo group 15 minutes after premedication the MAP shows a rise of $\sim 2 \text{ mm Hg}$ where as in the study group, MAP falls ~ 6 mm Hg. But after succinyl choline and intubation both study and control group show increase in MAP from previous value. However this stress induced increase in MAP is much attenuated in case of study group. (mean 86mm Hg with SD 8.6 at T5 for study group and mean of 99mm Hg with 4.8 SD for control group). The attenuation of MAP rise also continuous at 2,4, 6 minutes after intubation. Table(7), Figure(3). On comparing the sedation of score of patients 15 minutes after premedication, using Ramsay sedation scale. The dexmedetomidine group shows a significantly higher grade of sedation. Table(8), Figure(4). None of the patients in study group or control group developed bradycardia requiring atropine. None of the patients in study group or control group developed hypotension requiring phenylephrine.

between study and control groups is statistically

Table 1. Comparison of sample based on age							
1 32	C	ase	Control				
Age	Count	Percent Count Percent 42.9 12 34 34.3 13 37 22.9 10 28	Percent				
<=40	15	42.9	12	34.3			
41 - 50	12	34.3	13	37.1			
>50	8	22.9	10	28.6			
Mean \pm SD	42.5 ± 9.8		45.2 ± 9.3				

Table 1: Comparison of sample base	d on age
------------------------------------	----------

t = 1.16, p = 0.248

Corr	Case		Control			
Sex	Count	Percent	Count	Percent	χ2	р
Female	22	62.9	20	57.1	0.04	0.606
Male	13	37.1	15	42.9	0.24	0.626

Table 3: Comparison of sample based on weight

Waight	C	lase	Control				
Weight	Count	Percent	Count	Percent			
<60	11	31.4	12	34.3			
60 - 69	13	37.1	15	42.9			
>=70	11	31.4	8	22.9			
Mean \pm SD	65.1	± 9.4	63.8 ± 9				
t = 0.6 n = 0.552							

t = 0.6, p = 0.552

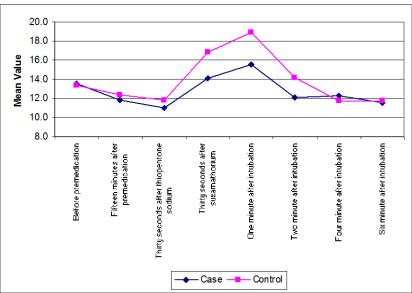
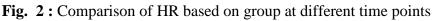
Table 4 : Comparison of sample based on procedure

Procedure	0	Case	Control		
Flocedule	Count	Percent	Count	Percent	
Cholecystectomy	4	11.4	3	8.6	
Excision	5	14.3	5	14.3	
Gastrectomy	0	0.0	2	5.7	
Hemithyroidectomy	2	5.7	0	0.0	
Mastectomy	5	14.3	4	11.4	
Parotidectomy	2	5.7	5	14.3	
Sistrunks operation	2	5.7	1	2.9	
Thyroidectomy	14	40.0	15	42.9	
Total thyroidectomy	1	2.9	0	0.0	

Table 5: Comparison of IOP based on group at different time points

			0 1					
Time Points		Case			Control			
Time Fonits	Mean	SD	N	Mean	SD	Ν	ι	р
Before premedication	13.5	2.0	35	13.3	2.1	35	0.38	0.706
Fifteen minutes after premedication	11.8	1.9	35	12.3	1.9	35	1.12	0.266
Thirty seconds after thiopentone sodium	11.0	1.6	35	11.9	1.8	35	2.21*	0.030
Thirty seconds after suxamethonium	14.1	2.1	35	16.8	2.2	35	5.3**	0.000
One minute after intubation	15.6	2.1	35	18.9	1.5	35	7.72**	0.000
Two minute after intubation	12.1	2.1	35	14.2	1.7	35	4.55**	0.000
Four minute after intubation	12.2	2.1	35	11.8	1.8	35	0.98	0.329
Six minute after intubation	11.6	2.0	35	11.7	1.9	35	0.35	0.727

**: - Significant at 0.01 level *: - Significant at 0.05 level

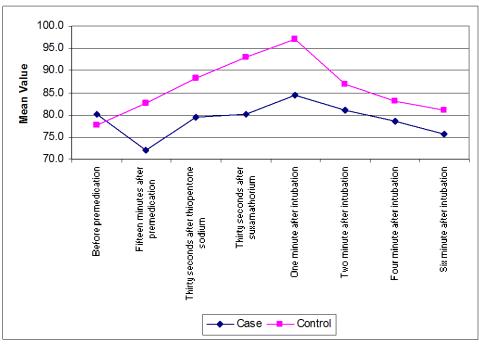
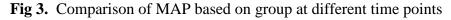
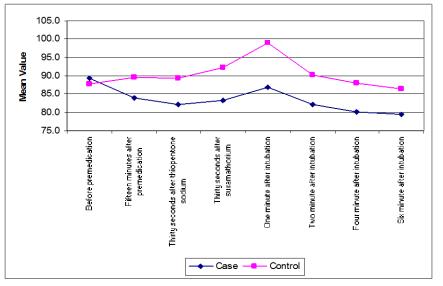

Fig1 : Comparison of IOP based on group at different time points

Table 6: Comparison of HR based on group at different time points

Case		Control			+	2	
Mean	SD	Ν	Mean	SD	Ν	ι	р
80.1	9.2	35	77.7	8.0	35	1.18	0.242
72.0	7.6	35	82.7	7.4	35	6.02**	0.000
79.4	9.8	35	88.3	6.4	35	4.5**	0.000
80.3	8.7	35	92.9	6.0	35	7.07**	0.000
84.4	8.7	35	97.0	7.2	35	6.55**	0.000
81.0	9.7	35	87.0	6.6	35	3.02**	0.004
78.5	9.0	35	83.0	6.6	35	2.38*	0.020
75.6	8.8	35	81.1	7.7	35	2.82**	0.006
	Mean 80.1 72.0 79.4 80.3 84.4 81.0 78.5	MeanSD80.19.272.07.679.49.880.38.784.48.781.09.778.59.0	Mean SD N 80.1 9.2 35 72.0 7.6 35 79.4 9.8 35 80.3 8.7 35 84.4 8.7 35 81.0 9.7 35 78.5 9.0 35	Mean SD N Mean 80.1 9.2 35 77.7 72.0 7.6 35 82.7 79.4 9.8 35 88.3 80.3 8.7 35 92.9 84.4 8.7 35 97.0 81.0 9.7 35 87.0 78.5 9.0 35 83.0	Mean SD N Mean SD 80.1 9.2 35 77.7 8.0 72.0 7.6 35 82.7 7.4 79.4 9.8 35 88.3 6.4 80.3 8.7 35 92.9 6.0 84.4 8.7 35 97.0 7.2 81.0 9.7 35 87.0 6.6 78.5 9.0 35 83.0 6.6	Mean SD N Mean SD N 80.1 9.2 35 77.7 8.0 35 72.0 7.6 35 82.7 7.4 35 79.4 9.8 35 88.3 6.4 35 80.3 8.7 35 92.9 6.0 35 84.4 8.7 35 97.0 7.2 35 81.0 9.7 35 87.0 6.6 35 78.5 9.0 35 83.0 6.6 35	Mean SD N Mean SD N t 80.1 9.2 35 77.7 8.0 35 1.18 72.0 7.6 35 82.7 7.4 35 6.02** 79.4 9.8 35 88.3 6.4 35 4.5** 80.3 8.7 35 92.9 6.0 35 7.07** 84.4 8.7 35 97.0 7.2 35 6.55** 81.0 9.7 35 87.0 6.6 35 3.02** 78.5 9.0 35 83.0 6.6 35 2.38*

**: - Significant at 0.01 level *: - Significant at 0.05 level

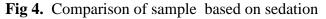




Time Points	Case		Control					
Time Points	Mean	SD	Ν	Mean	SD	Ν	L	р
Before premedication	89.2	4.7	35	87.7	3.0	35	1.63	0.108
Fifteen minutes after premedication	83.9	7.4	35	89.6	3.4	35	4.17**	0.000
Thirty seconds after thiopentone sodium	82.1	6.9	35	89.2	2.3	35	5.8**	0.000
Thirty seconds after suxamathorium	83.4	8.4	35	92.2	4.0	35	5.63**	0.000
One minute after intubation	86.9	8.6	35	99.0	4.8	35	7.27**	0.000
Two minute after intubation	82.1	7.9	35	90.2	4.5	35	5.25**	0.000
Four minute after intubation	80.1	8.4	35	88.0	4.2	35	5.01**	0.000
Six minute after intubation	79.4	7.8	35	86.3	4.2	35	4.64**	0.000

Table 7: Comparison of MAP based on group at different time points

**: - Significant at 0.01 level



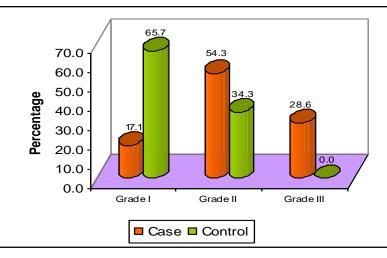


Table 8 : Comparison of sample based on sedation

Sadation	Ċ	Case	Co	ntrol	7	n	
Sedation	Count	Percent	Count	Percent	Z	р	
Grade I	6	17.1	23	65.7			
Grade II	19	54.3	12	34.3	4.58**	0.000	
Grade III	10	28.6	0	0.0			

#Mann Whitney U Test

JMSCR Vol||05||Issue||04||Page 20223-20231||April

2017

Table: 9 Case							
	Mean	Std Deviation	Р				
IOP at baseline	13.52	1.97	0.062				
Peak	15.55	2.11	0.002				

	Mean	Std Deviation	Р	
IOP at baseline	13.44	2.12	0.000	
Peak	18.93	1.49		

Table 10 Control

Table:11 Difference between peak IOP (T5) and baseline

	Mean	Std Deviation	Р
Case	2.02	2.38	< 0.005
Control	5.59	1.66	

Discussion

The intraocular pressure and haemodynamic stress response to laryngoscopy and intubation is supposed to be initiated by sympathetic responses which starts within 5 seconds of laryngoscope pressing the base of tongue. It reaches a peak at about 2 minutes after intubation. Then it starts to fall and reaches the baseline value between 5 to 10 minutes after intubation. In the present study, an attempt has been made to determine the efficacy of intravenous dexmedetomidine 0.6 µg /kg 15 minutes before succinyl choline and intubation in attenuating these stress responses. The intraocular hypotensive effect of dexmedeto-midine in the present study is consistent with previous several researches on alpha-2 agonists. Dexmedetomidine infusion as a premedicant was effective in reduction of the IOP significantly. The drug was also found to reduce the IOP by 34% after a single i.v. dose of dexmedetomidine 0.6 mg/kg-1^[10]. On the contrary, when Lee and colleagues infused dexmedetomidine as a supplement to isoflurane anaesthesia, they found no IOP lowering effect. However, the loading dose of dexmedetomidine used in their study was lower than that in the present study. No previous study examined the effect of dexmedetomidine on the succinvlcholine induced ocular hypertension. The effect of dexmedetomidine on the IOP may be caused by a direct vasoconstrictor effect on the afferent blood vessels of the ciliary body, which results reduction aqueous humour in of

production.^[11] Moreover, it could increase outflow of the aqueous humour caused by a reduction of the sympathetically mediated vasomotor tone of the ocular drainage system.^[12] Additionally, its associated haemodynamic response could contribute to the IOP lowering effect.^[13] In the present study, HR and MAP increased significantly after intubation in the control group. On the contrary, in patients who received dexmedetomidine premedication, this response was attenuated. Several previous studies have reported blunting the effect of dexmedetomidine on this sympathetic response to laryngoscopy and intubation.^{[14],[15],[16]} This could be due to the centrally mediated sympatholytic effects of alpha-2 agonists and by its decreasing norepinephrine release via peripheral presynaptic alpha-2 receptors. The dose of dexmedetomidine premedication administered in the present study (0.6 μ g kg-1) was based on a previous clinical study ^[17] where the selected dose resulted in a significant reduction in IOP and prevented the rise in the IOP in response to intubation. In addition, the pressor response to laryngoscopy and endotracheal intubation was also significantly attenuated. Higher doses of dexmedetomidine were associated with an additional reduction in arterial pressure and HR without any further decrease in IOP [18],[19]. Some authors find that the use of succinylcholine in open ocular trauma is controversial and an alternative anaesthetic management based on the use of nondepolarizing neuromuscular blocking agents. despite its slower onset, was suggested. Various methods have been tried to speed up this onset, administering including priming, the nondepolarizing relaxant before the induction agent and high dose regimen. Despite these strategies nondepolarizing neuromuscular blocking agents can still result in non-ideal intubation conditions: increases in the IOP from mask application and longer time with insecure airway and prolonged paralysis. Despite this debate about the use of succinvlcholine in open globe injury, most authors still agree on its use in difficult airway cases with salvageable eve situations.^[20]

Limitations of the study

A limitation of this study is that the effect of dexmedetomidinc on the IOP changes after succinylcholine and intubation cannot be isolated from its action on the haemodynamics since both effects are parallel and a causal relationship cannot be denied. However, this limitation should not decline the potential advantage of using dexmedetomidiue as alternative agent to obtund the IOP changes of succinylcholine and intubation.

Conclusion

Premedication with intravenous Dexmedetomidine under the dose given in the present study design attenuates the rise in intraocular pressure following succinylcholine and intubation .The attenuation of haemodynamic stress response to laryngoscopy and intubation is an additional advantage .Hence dexmedetomidine could be used as a premedicant in situation where an increase in intraocular pressure following succinylcholine and intubation is prejudicial for patients.

Acknowledgement

I sincerely thank Minnu Anil for proof reading the content and beautifying the language of this article

References

- 1. Optimal Dose of Succinylcholine Revisited ;Naguib, Mohamed M.B., B.Ch., M.Sc., F.F.A.R.C.S.I., M.D.*; Samarkandi, Abdulhamid M.B., B.S.. K.S.U.F.. F.F.A.R.C.S.I.[†]; Riad, Waleed M.B., B.Ch., M.Sc., A.B., M.D.[‡]; Alharby, Saleh W. M.B., B.S., F.R.C.S. (Glas)§ AnesthesiologyIssue: Volume 99(5), November 2003, pp 1045-1049
- Scandinavian clinical practice guidelines on general anaesthesia for emergency situations Acta AnaesthesiologicaScandinavicaVolume 54, Issue 8, pages 922–950, September 2010
- 3. Failure of diazepam to prevent the suxamethonium-induced rise in intra-ocular pressureAnaesthesiaVolume 38, Issue 2,

February 1983, Pages: 120–127, R. O. FENECKL and J. H. COOK

- Sufentanil or clonidine for blunting the increase in intraocular pressure during rapidsequence induction Georgiou, M.; Parlapani, A.; Argiriadou, H.; Papagiannopoulou, P.; Katsikis, G.; Kaprini, E.European Journal of Anaesthesiology: November 2002 - Volume 19 - Issue 11 - pp 819-822
- Dexmedetomidine reduces intraocular pressure, intubation responses and anaesthetic requirements in patients undergoing ophthalmic surgery.Jaakola ML1, Ali-Melkkilä T, Kanto J, Kallio A, Scheinin H, Scheinin M. Br J Anaesth. 1992 Jun;68(6):570-5.
- Efficacy of lignocaine in the suppression of the intra-ocular pressure response to suxamethonium and tracheal intubation V.
 K. GROVER, K. LATA, S. SHARMA, S.
 KAUSHIK AND A. GUPTA Anaesthesia, 1989, Volume 44, pages 22-2.
- Hemodynamic and anesthetic advantages of dexmedetomidine, an alpha 2-agonist, for surgery in prone position.Ozkose Z1, Demir FS, Pampal K, Yardim S. .Tohoku J Exp Med. 2006 Oct;210(2):153-60.
- Effect of perioperative dexmedetomidine on the endocrine modulators of stress response: a meta-analysis Xian-wang Wang1,2,[†], Jiang-bei Cao1,[†], Bao-sheng Lv2, Wei-dong Mi1,^{*}, Zhuo-qiang Wang2, Changsheng Zhang1, Heng-lin Wang2 and Zhen Xu2 Clinical and Experimental Pharmacology and PhysiologyVolume 42, Issue 8, pages 828–836, August 2015
- Current role of dexmedetomidine in clinical anesthesia and intensive careManpreet Kaur and P. M. Singh1 Anesth Essays Res. 2011 Jul-Dec; 5(2): 128–133. doi: 10.4103/0259-1162.94750.
- 10. Scheinin B, Lindgren L, Randell T. ScheinlnH. Scheinin M. Dexmedetomidine attenuates sympathoadrenal responses to tracheal intubation and reduces the need for

JMSCR Vol||05||Issue||04||Page 20223-20231||April

2017

thiopentone and peroperative fentanyl. Br J Anaesth 1992; 68: 126--31

- 11. Macri Fj, Cervario SJ. Clonidine. Arch ophthalmol 1978; 96: 2111-3
- 12. Vartiainen J, MacD Qnald E, Urtti A Rouhiainen H, Virtanen R. Dexmedetomidine-induced ocular hypotension in rabbits with normal or elevated intraocular pressures, Invest Ophthalmol Vis Sci 1992: 33: 2019--23
- Georgiou M, Parlapani A. Argiriadou H, Papagiannopoulou P. Katsikis G, Kaprini E. Sufentanil or clonidine for blunting the increase in intraocular pressure during rapidsequence induction.
- 14. Jaakola ML.. Ali-Melkkila T. Kanto J. Kallio A, Scheinin H. Scheinin M, Dexmedetomidine reduces intraocular pressure. intubation responses and anaesthetic requirements in patients undergoing ophthalmic surgery. Br J Anaesth 1992; 68: 570-5
- 15. Ozkose Z. Demir FS. Pampal K. Yardim S. Hemodynamic and anesthetic advantages of dexmedetomidine, an alpha2-agonist, for surgery in prone position. Tohoku J Exp Med 2006; 210: I53- 60
- 16. Yildiz M, Tavlan A. Tuncer S. Reisli R, Yosunkaya A, Otelcioglu S. Effect of dexmedetomidine on haemodynamic responses to laryngoscopy and intubation, perioperative haemodynamics and anaesthetic requirements. Drugs R D 2006;
- 17. Scheinin B, Lindgren L, Randell T. Scheinln H. Scheinin M. Dexmedetomidine attenuates sympathoadrenal responses to tracheal intubation and reduces the need for thiopentone and peroperative fentanyl. Br J Anaesth 1992; 68: 126-31
- Virkkila M. Ali-Melkkila T, Kanto j, Turunen J. Scheinin H. Dexmedetomidine as intramuscular premedication for day-case cataract surgery. A comparative study of dexmedetomidine, midazolam and placebo. Anaesthesia 1994; 49: 853--8

- Virkkila M, Ali-Melkkila T. Kanto J. Turunen J Scheinin H.Dexmedetomidine as intramuscular premedication in outpatient cataract surgery: a placebo-controlled doseranging study.Anaesthesia 1993; 48: 482-7
- 20. Chidiac EJ , Raiskin AO. Succinylcholine and the open eye. Opthalmol Clin North Am 2006; 19: 279-85