www.jmscr.igmpublication.org

Impact Factor 3.79

Index Copernicus Value: 5.88

ISSN (e)-2347-176x ISSN (p) 2455-0450

crossref DOI: http://dx.doi.org/10.18535/jmscr/v3i11.47

A Rare Case Report of Myocardial Infarction Due to Lightening

Authors

Bashir Ahmad Naikoo¹, S.Asif Rafiq², Irtifa Jeelani³

¹Consultant Cardiology at Post Graduate Department of Medicine GMC Srinagar J&K India Email: bashirnaik123@yahoo.co.in

²Post-Graduate Student, Department of General Medicine, GMC, Srinagar, J&K, India Email: syedasif3@gmail.com

³Intern Department of Medicine GMC Srinagar, J&k India

Email: sarbmed@gmail.com Corresponding Author

Dr. S Asif Rafiq

Post Graduate, Department of General Medicine GMC, Srinagar J&K, India- Mobile: +91-9697762827 Email – syedasif3@gmail.com

Introduction

Lightening is a natural phenomena which can lead injuries to the body. Lightning strikes in contrast to other high-voltage accidents are characterized by an extremely strong current and an extremely short exposure period. Injuries result from either the electrical energy, the high temperature, and/or the explosive power of the blast^{1,2}. It can involve all systems of the body,but short term mortality depends on cardiac affects. The electrophysiological effects on heart can result in supra ventricular tachycardia, ventricular fibrillation, asystole, QT prolongation, non-specefic ST-T wave changes. we present a case of lightening induced myocardial infarction which is a very rare complication.

Case

46 year old male was hit by a lightening side splash as he went out of his home with umbrella in his right hand. He felt unconscious and regained consciousness while being transferred to hospital. On arrival to patient has a GCS of 15/15 with BP 126/70 respiratory rate of 17 breaths per minute and temperature of 37 degree celcius. patient complained of chest discomfort and pain on right side of body. Examination revealed 25% burn on right side of body. Examination of other systems was normal. 12 lead ECG showed ST elevation in lead II, lead III and aVF. Cardiac enzymes elevated. **ECHO** showed were hypokinetic inferior basal of left ventricle. Ejection fraction was normal. Coronary angiography was done and it was normal. On the 2nd day of admission T wave inversion appeared in leads II, III and aVF as shown in figure 1. CT head and USG abdomen were normal. The patients was managed with IV fluids, daily good protein diet and medications dressings, including antibiotics, anti-schemic, anti-platelets, statins and beta-blockers and low molecular

JMSCR Vol||3||Issue||11||Page 8414-8416||November

weight heparin . Patient improved well and was discharged on 7th day of admission.

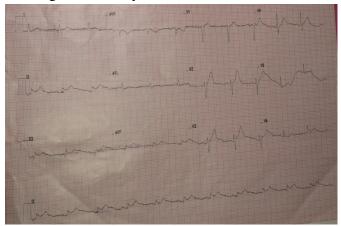


figure 1

Discussion

Injuries and death occurring due to lightning strike are reported frequently Worldwide mortality of lightning is estimated to be 0.2-1.7 deaths/ million people⁴. The primary cause of death is asystole or ventricular fibrillation, which occurs as a result of depolarized entire myocardium due to massive direct current shock ^{4,5}. For cases in which cardiac automaticity restore organized cardiac activity and spontaneous circulation return, respiratory arrest due to paralysis of respiratory center play a critical factor in mortality⁶. Cardiac events following lightning strikes and the severity of these events vary according to the electric current strength and the duration of exposure⁴ The exact mechanism of the cardiac damage seen in lightning strike is still unknown. In one case, emergency defibrillation was performed on a patient developing ventricular fibrillation after lightning injury4. Later, asystole developed, and ST elevation in inferior leads and ST segment depression in anterior leads were observed in the ECG taken after CPR. The coronary arteries were reported as normal in the emergency coronary angiography of that case. Another case has been reported in literature with acute inferior MI in the ECG after defibrillation⁷ while a different case has been reported with ST elevation due to direct lightning injuries⁸ .Similarly, inferior MI was detected in the ECG in the case under review. The coronary arteries were observed to be normal on coronary angiography. It was thought that since

our patient was exposed to a direct lightning current, MI occurred due to coronary artery spasm, and hypoxia occurred after respiratory arrest and thermal injury

Suggested hypothesis include direct thermal injury, the induction of coronary artery spasm, catecholamine discharge or autonomic stimulation unknown mechanism, through an arterial thrombosis and circulatory disturbance in cardiac microvessels^{4,5}. Lightning victims may present with sinus tachycardia, transient ST-segment elevation or depression, QT prolongation, contractions, ventricular premature fibrillation, or bundle-branch block^{4,6,9}. In our patient initial ECG ST-segment elevation in leads II, III, aVF, (Fig. 1). Previous studies also demonstrated that ST-segment and T-wave changes generally occur on the inferior and anterior aspect of the heart (Table 1). The reason of this is not clear yet. We think that these aspects of the heart are more prone to the affects of current of lightning. Previous reports also suggest that lightning strike do not give harm to coronary arteries, but may injure directly myocardial cells^{4,10}

Reference

- 1. Lifschultz BD, Donoghue ER: Deaths caused by lightning. J Forensic Sci 1993; 38: 353–8.
- Sellier K: Schäden und Tod durch Elektrizität. In: Mueller B (Hrsg.): Gerichtliche Medizin, Teil 1, 2. Auflage. Berlin, Heidelberg, New York: Springer 1975; 538–63.
- 3. Oehmichen M, Auer RN, König HG. Special Physical Trauma- Lightning Trauma. In: Oehmichen M, Auer RN, König HG.
- 4. Sağlam H, Yavuz Y, Yürümez Y, Özkeçeci G, Kilit C. A case of acute myocar- dial infarction due to indirect lightning strike. J Electrocardiol 2007; 40: 527-30.

JMSCR Vol||3||Issue||11||Page 8414-8416||November

- 5. Ritenour AE, Morton MJ, McManus JG, Barillo DJ, Cancio LC. Lightning injury: a review. Burns 2008; 34: 585-94.
- 6. Alyan O, Özdemir O, Tüfekçioğlu O, Geyik B, Aras D, Demirkan D. Myocardial injury due to lightning strike-a case report. Angiology 2006; 57: 219-23.
- 7. Rash W. Cardiac injury and death by lightning strike. J Emerg Nurs 2008; 34: 470-1.
- Lichtenberg R, Dries D, Ward K, Marshall W, Scanlon P. Cardiovascular effects of lightning strikes. J Am Coll Cardiol 1993; 21: 531-6.
- 9. O'Keefe Gatewood M, Zane RD. Lightning injuries. Emerg Med Clin North Am 2004; 22: 369-403.
- Zack F, Hammer U, Klett I, Wegener R. Myocardial injury due to lightning. Int J Legal Med 1997; 110: 326-8.